Chemical Engineers from University of Melbourne Develop Functional 3D Printing Polymers

IMTS

Share this Article

melbourne-uni-logoWe all know how revolutionary 3D printable polymers have been for prototyping of all shapes and sizes, but the industry is still in need of more functional materials if it ever hopes to increase the production capabilities of additive manufacturing. You may think that the key to getting to this next level rests on the laurels of more advanced and industrial processes like metal 3D printing, but smart polymers and plastics have proved to be just as useful for certain applications that necessitate functionality. We’ve covered a number of these recent material advancements, from fluoropolymers to carbon fiber reinforced thermoplastics.

Now, a group of chemical engineers from the University of Melbourne have discovered a way to 3D print smart polymers that are highly functional, as well as cheaper, cleaner, and more accessible than what’s available on the market. The engineering team behind the development of these smart polymers is being headed by Dr. Luke Connal, who has been leading his team from the school’s Department of Chemical and Biomolecular Engineering.

These smart and functional polymers are not inert objects, rather they are designed to undertake a chemical reaction that will perform a function in a specific environment. For instance, these 3D printable polymers can potentially be used to rid an environment of toxins, making a seemingly inanimate object not so inanimate after all.

makingnewfun

“We have developed interesting materials that can be printed on the more affordable range of 3-D printers, like the ones you can buy in hardware shops these days,” said Dr Connal. “Basically we are trying to add function to these 3-D printed objects. Rather than just having a inanimate printed object, we are creating something that you can do something else with.”

The University of Melbourne chemical engineers had their research paper, entitled “Three Dimensional Printing of pH-Responsive and Functional Polymers on an Affordable Desktop Printer”, was recently published in ACS Applied Materials & Interfaces. In the paper, Dr. Connal and his team outlined a number of other future applications for these smart polymers. For example, a flow regulation device was produced with a polymer valve that that opens and closes to control the flow rate of water dependent on the pH of the flowing water.

am-2016-073884_0009

A figure detailing how the smart polymer water valve functions.

The research team has also 3D printed a catalytic device that is capable of removing environmental pollutants from water. The polymer catalyst was tested by being placed in a contaminated solution colored yellow, which turned clear, proving that the toxic substance had been neutralized. Dr. Connal’s team consist of PhD students Milena Nadgorny, Chao Chen and PostDoc Fellow Dr. Zeyun Xiao. The research was heavily influenced by Nadgorny, a chemical engineering and inkjet printing expert who has worked with the likes of HP.

The project is challenging in a number of ways, from the creation of the material to ensuring the properties are as desired once printed. This means that the research team has had to focus intensely on both the synthesis and production side, ensuring that the smart polymers have the right shape, accurate complex properties to carry out its function, and are also capable of being 3D printed. Discuss in the Smart Polymers forum at 3DPB.com.

[Source: Phys.org]

Share this Article


Recent News

How Desktop 3D Printing Can Help Your Small Business

Spare Parts 3D’s New Software Converts 2D Drawings into 3D Models



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing

AJ Strandquist is a different kind of additive manufacturing (AM) CEO. He’d be far more at home walking around a shop floor than he would be sitting in the boardroom...

2025 Renault 5 E-Tech Electric Is Latest Car with 3D Printed Accessories 

Due to the required numbers, additive manufacturing (AM) has struggled to make significant inroads into vehicle interiors in meaningful numbers—at least as far as public knowledge is concerned. Typically an...

3D Printed Spare Parts Come to Brazil via New Partnership

In a new development for the adoption of additive manufacturing (AM) for spare parts, SENAI CIMATEC, a prominent Brazilian technology institution, and French start-up SPARE PARTS 3D have announced a...

3D Printing’s Journey to a New Industrial Reality

In the world of 3D printing, we stand to witness a revolution unfold before our eyes. As the saying goes, “There’s a time and place for everything,” and for 3D...