MIT and Binghamton Researchers Find Possible Way to Make FDM 3D Printer Speeds Faster

IMTS

Share this Article

One of the most frustrating parts of 3D printing – other than failed prints – is print speed, or lack thereof. 3D printers are getting progressively faster, but overall, they’re still slower than most people would consider ideal, especially when it comes to large prints. I, personally, have never really paused to consider the mechanics of print speed, but researchers at MIT and Binghamton University have, and they discovered that slow print speed is an equal opportunity offender – it doesn’t discriminate between professional and desktop FDM 3D printers.

A team led by Professor John Hart of MIT’s Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity discovered that when printing at a 0.2 mm thickness, both desktop and professional FDM 3D printers tended to build at a rate of about 10 to 20 cubic centimeters per hour. One of the main reasons, they found, has to do with the feed mechanism, namely a pinch wheel that feeds the filament into the extruder. The wheel is limited in that it can only exude about 60 newtons of force and feed the material at a rate of about 9 mm per second in order to fully melt the filament.

Scott Schiffres

“We found that the rate at which a polymer melts is limiting in many implementations,” said Scott Schiffres, Binghamton Associate Professor of Mechanical Engineering. “The pressure required to push the polymer through the nozzle is a sharp function of temperature. If the core is not hot enough, the printer will not be able to squeeze the polymer through the nozzle.”

Knowing that means that 3D printers could potentially be manufactured differently in order to address the issue. The central issue sounds like an easy fix – heating the polymer before it’s fed into the extruder. Of course, re-engineering 3D printers to do so isn’t so simple, but the knowledge is a start, and the MIT and Binghamton researchers hope that their work leads others to consider 3D printer design in a new way.

“The work has implications for how to scale up additive manufacturing and the trade-off between higher-resolution printing and speed. We hope it will inspire future work to investigate pre-heating of the polymer, and printing with multiple extruders,” Schiffres continued.

[Image: Verbatim]

The research is documented in a paper entitled “Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design,” which you can access here.

“While additive manufacturing (AM) advances rapidly towards new materials and applications, it is vital to understand the performance limits of AM process technologies and to overcome these limits via improved machine design and process integration,” the researchers stated. “…[Our] approach validates the build rate performance of current FFF systems, and suggests that significant enhancements in FFF build rate with targeted quality specifications are possible via mutual improvements to the extrusion and heating mechanism along with high-speed motion systems.”

Additional authors on the paper include MIT graduate students Jamison Go and Adam Stevens. The research was supported by a grant from Lockheed Martin, as well as by the Department of Defense, the MIT International Design Center (IDC) and MIT MakerWorks. Discuss in the Print Speed forum at 3DPB.com.

[Source: Binghamton University]

 

Share this Article


Recent News

AML3D Secures $155K Aussie Defense Contract to Test Cutting-Edge Marine Parts

Attending the ASTM F42/ISO TC 261 Meetings: The Nitty-Gritty of Additive Manufacturing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

World’s Largest Polymer 3D Printer Unveiled by UMaine: Houses, Tools, Boats to Come

The University of Maine has once again broken its own record by unveiling the largest polymer 3D printer in the world. Surpassing its 2019 achievement, the new Factory of the...

Featured

Changing the Landscape: 1Print Co-Founder Adam Friedman on His Unique Approach to 3D Printed Construction

Additive construction (AC) is much more versatile than it seems, at first: as natural as it is to focus on the exciting prospect of automated home construction, there’s far more...

Gorilla Sports GE’s First 3D Printed Titanium Cast

How do you help a gorilla with a broken arm? Sounds like the start of a bad joke a zookeeper might tell, but it’s an actual dilemma recently faced by...

3D Printing Webinar and Event Roundup: April 21, 2024

It’s another busy week of webinars and events, starting with Hannover Messe in Germany and continuing with Metalcasting Congress, Chinaplas, TechBlick’s Innovation Festival, and more. Stratasys continues its advanced training...