Human-Computer Interaction Institute 3D Prints Special Prosthesis for Young Cello Player

IMTS

Share this Article

According to the Wohlers Report 2016, the 3D printing industry was over $5.1 billion back in 2015, and it’s continued to grow into the $10 billion a year industry it is now. But it hasn’t fulfilled everything we thought it would – the 3D printing hype has slowed down, and most people have now realized that a veritable desktop factory won’t be the norm for everyone. But technology journalist and 3D printing enthusiast Kit Eaton says that while we are definitely “a long way from a 3D printer in every home,” some of the less eye-popping 3D printing applications, like industrial manufacturing and production and medical technology, are frequently overlooked. The Human-Computer Interaction Institute (HCII) at Carnegie Mellon University (CMU) is working to change that.

HCII professor Jennifer Mankoff, who researches assistive technologies and human assistance, says that using customizable 3D printing technology to manufacture assistive technologies and prosthetics is the perfect solution to a large problem, as it allows for a safer, more cost-effective alternative. The US market for assistive devices rings in at just under $1 million: roughly 700,000 people have an upper limb amputation, and about 6.8 million other people have fine motor and/or arm dexterity limitations. All of these people could regain a certain amount of independence through assistive technology.

Mankoff explained, “What people need is simple – a better way to hold a knitting needle, roll out dough or open a jar. Yet finding individually customized solutions to each of these problems is almost impossible. When it comes to such task-specific, custom prosthetics, mass production isn’t really an option.”

We talk about 3D printed prosthetics a lot here. But Mankoff said that the market for assistive technology is only designed around a small number of recipients, and certainly not the millions of people who require devices and technologies that are usually fairly expensive.

“In addition, there’s only so many variations that can be supported by such a market. In contrast, our work at the Institute focuses on individualized tools that meet personal and task-specific needs, we can make hands or arms quickly, inexpensively and they have specific advantages in terms of design flexibility and weight,” Mankoff said.

CMU’s assistive technologies project, created by a research team within the university’s School of Computer Science and volunteer network e-NABLE, aims to develop more inexpensive methods of manufacturing and distributing these life-changing upper limb prosthetics for the people who need them most; one of those methods is obviously 3D printing.

Mankoff said, “[We’ve designed] prosthetic devices for [various] specific tasks: For example, playing the cello, operating a hand-cycle, and using a table knife. By creating task-specific solutions, customized to the needs of the person and a task they care about, we believe it is possible to improve the retention of prosthetic devices. When a prosthetic does not fit the needs of its user well, it is likely to be abandoned. We believe that one way to reduce this is to make more task-specific solutions.”

A young cello player, 11-year-old Kharan Wilbur of Pittsburgh, has only one arm, but the team created a prosthesis for Wilbur so he could play the cello.

Kharan Wilbur, aged 11, can now play the cello with with his 3D printed arm

This specific prosthesis allows for more fine-grain movement than traditionally manufactured prosthetic arms do: prototypes and design ideas can be changed and upgraded several times, as 3D printing makes iterative design much easier. Additionally, while a typical prosthetic hand could cost between $6,000 and $10,000, 3D printing offers more affordable solutions. In addition to helping over 1,500 people since the project began in 2013, CMU’s assistive technologies project allowed Wilbur to play the cello at his elementary school recital.

Mankoff says that the overarching goal of the project is to make the process smarter.

“We are working to develop technologies for tracking use over time so we can discover how 3D-printed prosthetic devices are used, and what opportunities exist to improve their adoption and reduce abandonment. We are also working on new materials and new ways of printing that can increase comfort and support new types of interactive devices.”

Share your thoughts in the 3D Printed Prosthesis forum at 3DPB.com.

[Sources: Forbes, Health Tech Insider, Digital Trends / Images: CMU]

 

 

 

 

 

Share this Article


Recent News

World’s Largest Polymer 3D Printer Unveiled by UMaine: Houses, Tools, Boats to Come

Changing the Landscape: 1Print Co-Founder Adam Friedman on His Unique Approach to 3D Printed Construction



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Profiling a Construction 3D Printing Pioneer: US Army Corps of Engineers’ Megan Kreiger

The world of construction 3D printing is still so new that the true experts can probably be counted on two hands. Among them is Megan Kreiger, Portfolio Manager of Additive...

Featured

US Army Corps of Engineers Taps Lincoln Electric & Eaton for Largest 3D Printed US Civil Works Part

The Soo Locks sit on the US-Canadian border, enabling maritime travel between Lake Superior and Lake Huron, from which ships can reach the rest of the Great Lakes. Crafts carrying...

Construction 3D Printing CEO Reflects on Being Female in Construction

Natalie Wadley, CEO of ChangeMaker3D, could hear the words of her daughter sitting next to her resounding in her head. “Mum, MUM, you’ve won!” Wadley had just won the prestigious...

1Print to Commercialize 3D Printed Coastal Resilience Solutions

1Print, a company that specializes in deploying additive construction (AC) for infrastructure projects, has entered an agreement with the University of Miami (UM) to accelerate commercialization of the SEAHIVE shoreline...