3Dynamic Systems to Commercialize Its 3D Bioprinted Vascular Tissue Scaffolds

IMTS

Share this Article

Commercial 3D bioprinting systems manufacturer 3Dynamic Systems, based out of the Swansea University campus in Wales, is well known for its bioprinting research studies and 3D bioprinters. The company has spent years working on 3D bioprinting, and earlier this summer developed a new technology, and new biomaterials, that could be used to treat microtia, a condition where the ear is undeveloped. Now, 3Dynamic Systems has announced that it will be commercializing its line of 3D bioprinted vascular scaffolds.

3Dynamic Systems was first founded as an early-stage research company back in 2012 by Dr. Daniel J. Thomas, and now produces functional 3D human tissues for medical research, and perhaps someday therapeutic applications, with its Omega Tissue Engineering Workstation Bioprinter. The hope of 3Dynamic Systems is that its new vascular technology will be able to be used someday in the future for surgical therapy and transplantation.

“Vessels are made up of different cell types and our new Omega allows for many types of cells to be deposited in 3D,” Dr. Thomas explained. “Biopsied tissue materials can be gathered from a host, with stem cells isolated and multiplied. These cells are cultured and placed in a bioreactor, which provides oxygen and other nutrients to keep them alive. The millions of cells that are produced are then added to our bioink and bioprinted into the correct 3D geometry.”

3Dynamic Systems also builds perfusion bioreactors that test tissue structures over periods of several months for the effects of stimulation, and test the influence of drugs on 3D cell behavior.

These new 3D vascular tissue scaffolds are the first commercial tissue product that the company has developed, and commercialization of the bioprinted vessels will begin over the next two years. 3Dynamic Systems has increased its research, and is currently focused on fabricating heterogeneous tissues that can one day be used in the operating room.

3D printed tissue structures

Research into 3D bioprinting for future organ transplants is definitely picking up – just last month, Prellis Biologics figured out how to create blood vessels by 3D printing scaffolding that contains microvascular structures, which is necessary to get nutrients and oxygen to cells. At the moment, 3Dynamic Systems only manufactures 20 mm sections of vessels, but could potentially print larger, more complex vessels if this size does well.

The company’s 3D bioprinting research centers around using cells’ natural self-organizing properties to develop functional tissues. The cell-based biogel matures into a tissue a few weeks after the 3D bioprinted vessels are transferred to an incubator. In order to sustain the proteoglycans during the maturation stage, hyaluronic acid is added to the bioink, which is also used by iMakr Med with its bioprinting platform. This is a very important maturation step in the formation of biochemical and structural support material, also called extracellular matrix (ECM).

The company will continue developing its technology, working to harness tissues for pharmaceutical trials, and, in the future, operative repair.

“The next opportunity for our research is in developing organ on a chip technology to test drugs and treatments,” said Dr. Thomas. “So far we have initial data based on our vascular structures. In the future this method may be used to analyze any side-effects of new pharmaceutical products.”

Potentially, the next steps 3Dynamic Systems takes in the development of this process could help change the field of reconstructive medicine, which may even result in the on-demand bioengineering of replacement human tissues for transplantation one day.

Discuss this and other 3D printing topics at 3DPrintBoard.com, or share your thoughts in the Facebook comments below.

[All images provided by 3Dynamic Systems]

 

Share this Article


Recent News

“Bundled Light” Enables High Quality Plastic 3D Printing from LEAM

Stoke Space Deploys Solukon’s Automated Depowdering for 3D Printing Reusable Rockets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: March 24, 2024

We’ve got a very busy week of webinars and events, starting with Global Industrie Paris and a members-only roundtable for AM Coalition. Stratasys will continue its advanced in-person training and...

New EOS M 290 1kW Enables Copper 3D Printing for New Space, Automotive, and More

EOS has released a new EOS M 290 1kW metal powder bed fusion (PBF) system, designed specifically with copper in mind. Initially developed by its custom machine building subsidiary, AMCM,...

3D Printing Webinar and Event Roundup: March 3, 2024

In this week’s roundup, we have a lot of events taking place, including SPE’s ANTEC 2024, Futurebuild, the AAOP Annual Meeting, JEC World, and more. Stratasys continues its training courses,...

EOS Taps 1000 Kelvin for “First” AI Co-pilot for 3D Printing

Additive manufacturing (AM) startup 1000 Kelvin has joined forces with EOS to integrate AMAIZE, a pioneering artificial intelligence (AI) co-pilot for AM, into the EOS software suite. The solution aims...