3D Printed Prototypes Demonstrate Smart Windows That Can Keep Your Car Cool in the Sun

IMTS

Share this Article

When you’ve left your car in the sun all day, unless you were lucky enough to find a parking spot under a tree, getting back in and sitting inside immediately leads to feeling enveloped in an intense, stifling heat. But researchers from the University of Delaware may have found a solution, with their prototype windows that can switch from clear to reflective just by adding a liquid. The technology could be used not only to keep your car cool under the sun, but also for roof panels that keep houses warm in the winter and cool in the summer, and to make energy-efficient office buildings.

Switchable glass, which uses applied voltage to change from opaque to clear, is available, but at $100 per square foot, it’s not exactly a wallet-friendly option. But by combining smart technology with 3D printing, which has been done with mirrors and other products, the researchers developed an inexpensive, easy to manufacture prototype smart glass, made of a 3D printed plastic panel covered by a thin chamber. The panel has a pattern of retroreflective structures, which means the light reflects back to the direction it originally came from. These structures become transparent when the chamber is filled with fluid methyl salicylate, which matches the plastic’s optical properties.

Schematic view of variable transmittance prototype.

“We expect our smart glass to cost one tenth of what current smart glass costs because our version can be manufactured with the same methods used to make many plastic parts and does not require complicated electro-optic technology for switching,” Keith W. Goossen with the University of Delaware said.

“Although we had to develop new ways to process 3D printable plastics with good optical performance, develop inexpensive refractive index-matching fluids and come up with highly reflective optical structures, the innovation here is mostly in recognizing that such a simple concept could work.”

Operating modes of variable transmittance device, (left) air – reflective, (middle) water – diffuse transmittance, (right) index matched – specular transmittance.

Goossen and fellow University of Delaware researcher Daniel Wolfe published a paper on their prototype in the Optical Society journal Optics Express, titled “Evaluation of 3D Printed Optofluidic Smart Glass Prototypes.” They used a Stratasys Objet30 Pro 3D printer to manufacture the plastic panels, complete with repeating retroreflective structures, for their switchable smart glass prototype, out of Stratasys’ transparent 3D printing photopolymer VeroClear.

“Without 3D printing, we would have had to use a molding technology, which requires building a different mold for every different structure. With 3D printing, we could easily make whatever structure we wanted and then run experiments to see how it performed,” said Goossen. “For commercial production, we can use standard injection molding to inexpensively make the retroreflective panels.”

The researchers also developed post-processing steps for the panels, which were constructed in varying sizes for testing purposes, to make sure that the plastic would stay highly transparent, and exhibit accurate corners, after printing was complete; both of these qualities are necessary for the structures to attain retroreflection.

“Prototyping the corner cube on the 3D printer indicated the optimum size was with a side wall of 4 mm,” the paper reads. “As the geometry reduces in size, printing defects increase and resolution decreases.”

Experimental setup for cycling.

The repeating structures were put through optical testing in order to find out if underlying characteristics, like the material’s light absorption or surface roughness, would cause any unexpected issues; luckily, the researchers were able to determine through the tests that the retroreflective structures worked just as they should. In addition, they demonstrated that their smart window prototype could stand up under thousands of cycles, switching back and forth from reflective to transparent, without any signs of degradation. However, they also determined that a little of the fluid stays on the structure, and they are now developing coatings to help the fluid drain off without leaving residue.

“To further demonstrate the technology’s usefulness as switchable glass, we are building an office door that incorporates the new smart glass as a switchable privacy panel. These types of panels are currently made with much more expensive technology. We hope that our approach can broaden this and other applications of smart glass,” said Goossen.

Prototype smart glass is retroreflective (left) and becomes clear (right) when a liquid with similar optical properties is pumped into a chamber in front of the structure. [Image: Keith Goossen, University of Delaware]

Obviously, one of the most exciting applications for the researchers’ new smart glass is a car windshield that will automatically switch to a reflective state when parked in the sun.

Goossen said, “You can’t use today’s commercially available switchable glass for this application because in the darkened state the windshield still absorbs sunlight and becomes hot. Because our glass is retroreflective in the non-transparent state, almost all the light is reflected, keeping the glass, and thus the car, from getting hot.”

The retroreflective glass could also be used to reduce a skyscraper’s contribution to city warming, because it can direct light back up to the sun and not down to the street. In addition, the inexpensive, plastic retroreflective panels can also be used to build switchable roofs to reduce heating and cooling costs for homes in areas that are sunny all year long. However, since the fluid methyl salicylate used in the prototype smart window could freeze in temperatures less than 16°F, freeze-resistant fluids would need to be developed.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source: The Optical Society]

 

Share this Article


Recent News

“Bundled Light” Enables High Quality Plastic 3D Printing from LEAM

Stoke Space Deploys Solukon’s Automated Depowdering for 3D Printing Reusable Rockets



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Webinar and Event Roundup: March 24, 2024

We’ve got a very busy week of webinars and events, starting with Global Industrie Paris and a members-only roundtable for AM Coalition. Stratasys will continue its advanced in-person training and...

New EOS M 290 1kW Enables Copper 3D Printing for New Space, Automotive, and More

EOS has released a new EOS M 290 1kW metal powder bed fusion (PBF) system, designed specifically with copper in mind. Initially developed by its custom machine building subsidiary, AMCM,...

3D Printing Webinar and Event Roundup: March 3, 2024

In this week’s roundup, we have a lot of events taking place, including SPE’s ANTEC 2024, Futurebuild, the AAOP Annual Meeting, JEC World, and more. Stratasys continues its training courses,...

EOS Taps 1000 Kelvin for “First” AI Co-pilot for 3D Printing

Additive manufacturing (AM) startup 1000 Kelvin has joined forces with EOS to integrate AMAIZE, a pioneering artificial intelligence (AI) co-pilot for AM, into the EOS software suite. The solution aims...