3D Printing Technology Offers New Zealand Researchers the Design Freedom to Develop Better Heat Exchangers

IMTS

Share this Article

[Image: University of Maryland]

3D printing technology has made its way into many fields over the years, including the heating and cooling industry. Typically, a heat exchanger, which is designed to efficiently transfer heat from one matter to another one, is made from thin sheets of material which have been welded together. Due to the complex design of the product, it’s time-consuming and difficult to make, and welding material makes the part heavier than necessary. There has been some research on using 3D printing to manufacture heat exchangers, mainly because the technology could increase manufacturing efficiency and design customization, and the possibility of damaging corrosion is reduced.

Two academics with the University of Canterbury (UC) in New Zealand recently used 3D printing technology to develop potentially game-changing heat exchangers. Dr. Tim Huber and Professor Conan Fee participated in the university’s eighth annual Tech Jumpstart competition, which gives UC researchers the chance to commercialize their projects and ideas.

Over a period of six months, the competition awards a total of $20,000, funded by various technology incubators and the public research organization network KiwiNet, to five UC projects, for the purposes of commercialization processes like strategic planning, market validation, and financial analysis.

“The Tech Jumpstart competition takes innovative research ideas to an exciting new level of exploring commercial opportunity,” said UC Deputy Vice-Chancellor Tumu Tuarua Ian Wright. “The commercial potential of these ideas makes UC more attractive to investor groups, furthers intellectual capability and gains more leverage with government, private research and consulting opportunities.”

The Tech Jumpstart award will allow Fee and Dr. Huber to hire research assistants this summer, as well as use a specialized metal 3D printer in order to manufacture their heat exchangers out of materials like titanium or stainless steel. Because plastic has poor thermal conductivity capabilities, it’s not a good material choice for 3D printed heat exchangers, which is why metal materials are typically used.

(L-R) UC academics Dr. Tim Huber and Professor Conan Fee have come up with original technology to create high-performance heat exchangers.

By utilizing 3D printing technology to more efficiently manufacture their original class of heat exchangers, the project could open up new possibilities in multiple fields, such as laptop processors, air conditioners, and motorsports, where, according to the university, “cooling can take place faster in radical new shapes while providing increasingly important reductions in weight.”

Professor Fee, who is the Head of UC’s new School of Product Design, said that the project is a perfect example of a “cross-disciplinary research group,” as it also involved chemistry, chemical and mechanical engineering, mathematics, and physics.

Professor Conan Fee

“This will facilitate the development of some promising technology that is expected to improve the efficiency of devices meant for heating or cooling. That includes smaller and lighter devices for electronics, giving racing cars a competitive advantage, provide for lighter aerospace vehicles, and smaller, more attractive heat pumps in homes amongst other things,” said Professor Fee. “The growth of 3D printing for new applications is exponential and it is stimulating a huge set of opportunities for new designs that were not previously possible. Our 3D-printed porous heat exchangers are an example of something that cannot be made by conventional technologies but is now possible, expanding our thinking and potentially growing innovation in New Zealand.”

Using 3D printing to design the heat exchangers means that they no longer need to be made in the traditional rectangular and cylindrical shapes, but rather can be made to fit within unusual, constrained shapes, or modeled specifically for aerodynamic purposes.

3D printing will also help the researchers save on both weight and space for the heat exchangers, which opens up the possibility for innovations such as faster, more fuel-efficient vehicles and smaller electronic devices, in addition to preventing laptops from overheating on a person’s lap and leaving smaller footprints for home cooling and heating. Because of the weight and space reductions, manufacturing costs are also reduced.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source/Images: University of Canterbury]

 

Share this Article


Recent News

HP & INDO-MIM Collaborate to Boost Metal 3D Printing in India

Precision at the Microscale: UK Researchers Advance Medical Devices with BMF’s 3D Printing Tech



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Nylon 3D Printed Parts Made More Functional with Coatings & Colors

Parts 3D printed from polyamide (PA, Nylon) 12 using powder bed fusion (PBF) are a mainstay in the additive manufacturing (AM) industry. While post-finishing processes have improved the porosity of...

3DPOD Episode 193: Flow and What’s Possible in 3D Printing with Ricky Wildman, University of Nottingham

Ricky Wildman is working on 3D printing pills, but, as Professor of Multiphase Flow and Physics at Nottingham, he does a whole lot more. His research encompasses the characterization of...

3D Printing Webinar and Event Roundup: March 17, 2024

It’s another busy week of webinars and events, including SALMED 2024 and AM Forum in Berlin. Stratasys continues its in-person training and is offering two webinars, ASTM is holding a...

3D Printed Micro Antenna is 15% Smaller and 6X Lighter

Horizon Microtechnologies has achieved success in creating a high-frequency D-Band horn antenna through micro 3D printing. However, this achievement did not rely solely on 3D printing; it involved a combination...