Researchers Develop New Rotational 3D Printing Method

IMTS

Share this Article

The Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) has made a tremendous amount of progress in the field of materials science, and much of that work has to do with 3D printing. The school’s researchers have used a hybrid 3D printing technique to create stretchable wearable electronics, and have developed novel 3D printing materials as well as metamaterials. Now SEAS has used 3D printing in the development of structural composite materials optimized for strength, stiffness and damage tolerance.

The new 3D printing method offers unprecedented control over the arrangement of short fibers embedded in polymer matrices. The researchers used the method to program fiber orientation within epoxy composites in specified locations to create the structural materials. The method has been named rotational 3D printing, and it could lend itself to a wide variety of applications. Because of the modular nature of the ink designs, several different filler and matrix combinations can be used to tailor the 3D printed objects’ electrical, optical or thermal properties.

“Being able to locally control fiber orientation within engineered composites has been a grand challenge,” said the study’s senior author, Jennifer A. Lewis, Hansjorg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS and a Core Faculty Member of the Wyss Institute for Biologically Inspired Engineering at Harvard.

“We can now pattern materials in a hierarchical manner, akin to the way that nature builds.”

How it works is that the researchers very precisely choreograph the speed and rotation of a 3D printer nozzle to program the arrangement of embedded fibers in polymer matrices. They do this by equipping a rotational printhead system with a stepper motor to guide the angular velocity of the rotating nozzle as the ink is extruded.

“Rotational 3D printing can be used to achieve optimal, or near optimal, fiber arrangements at every location in the printed part, resulting in higher strength and stiffness with less material,” said then-postdoctoral fellow Brett Compton, now Assistant Professor in Mechanical Engineering at the University of Tennessee, Knoxville. “Rather than using magnetic or electric fields to orient fibers, we control the flow of the viscous ink itself to impart the desired fiber orientation.”

According to Compton, the concept can be applied to any material extrusion printing method, including FDM/FFF, direct ink writing, and large-scale thermoplastic additive manufacturing, using any filler material from carbon and glass fiber to metallic or ceramic whiskers and platelets. The method allows for the 3D printing of engineered materials that can be spatially programmed to achieve specific performance goals. The orientation of the fibers, for example, can be locally optimized to increase the damage tolerance at locations that would be likely to undergo the greatest stress during loading, hardening potential failure points.

“One of the exciting things about this work is that it offers a new avenue to produce complex microstructures, and to controllably vary the microstructure from region to region. More control over structure means more control over the resulting properties, which vastly expands the design space that can be exploited to optimize properties further,” said then-postdoctoral fellow Jordan Raney, now Assistant Professor of Mechanical Engineering and Applied Mechanics at the University of Pennsylvania.

“Biological composite materials often have remarkable mechanical properties: high stiffness and strength per unit weight and high toughness. One of the outstanding challenges of designing engineering materials inspired by biological composites is control of fiber orientation at small length scales and at the local level,” said Lorna J. Gibson, Professor of Materials Science and Engineering at MIT, who was not involved in the research. “This remarkable paper from the Lewis group demonstrates a way of doing just that. This represents a huge leap forward in the design of bio-inspired composites.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: SEAS]

 

Share this Article


Recent News

Profiling a Construction 3D Printing Pioneer: US Army Corps of Engineers’ Megan Kreiger

Meltio and Accufacture Unveil Robotic Metal 3D Printer Made in the US



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing News Briefs, April 13, 2024: Robotics, Orthotics, & Hypersonics

In 3D Printing News Briefs today, we’re focusing first on robotics, as Carnegie Mellon University’s new Robotics Innovation Center will house several community outreach programs, and Ugogo3D is now working...

Rail Giant Alstom Saves $15M with 3D Printing Automation Software 3D Spark

3D Spark has entered into a three-year deal with the rail giant Alstom. Alstom, a transport behemoth with annual revenues of $16 billion, specializes in the manufacture of trains, trams,...

Meltio Expands Global Reach with New Partnerships in the Americas and Europe

Spanish 3D printing manufacturer Meltio has expanded its sales network across the globe. With the addition of three new partners in the United States, Brazil, Argentina, and Italy, Meltio aims...

3D Printing Webinar and Event Roundup: April 7, 2024

Webinars and events in the 3D printing industry are picking back up this week! Sea-Air-Space is coming to Maryland, and SAE International is sponsoring a 3D Systems webinar about 3D...