Rapid Prototyping with 3D Printing Leads to Breakthrough Hearing Aid

IMTS

Share this Article

Elisabeth de Meuron with her ear trumpet [Image: Wikipedia]

Hearing aids have come a long way since the ear trumpet was introduced in the 17th century, with the development of the first electronic hearing aids in the late 19th century coinciding with telephone technology and building upon the telephone’s microphone and transmission technologies. Prior to the 1930s, hearing aids were bulky devices. As miniaturization techniques improved, although they were portable, they were still relatively heavy and required external attachments as they functioned in a similar manner to contemporary telephones. The development of the transistor in the middle of the 20th century led the way to its replacement for the vacuum tube in the hearing devices, but it didn’t take long for the next improvement, the integrated circuit developed in 1958, to push the frontier of hearing technology to the next level. Each development in the years since then has led to smaller devices with better sound quality.

According to the World Health Organization (WHO), approximately 5% of the world’s population is affected by disabling hearing loss. In the US alone, it is estimated that 35 million people have some level of hearing loss, but only 28% of that population has a hearing aid. Many people in the developed world have expressed that they avoid using a hearing aid because of how they look, the difficulty there is in tuning them, and frustration with time and money spent buying and replacing batteries.

These frustrations are not confined to the United States, and have led an Australian research team to develop a device called Facett which should help to eliminate some of the barriers that people face when deciding whether or not to use a hearing aid, as Elaine Saunders, Adjunct Professor at Swinburne University of Technology and co-developer of the device, explained:

“This is a huge leap in progress for the four million Australians suffering hearing loss, many of whom aren’t using hearing aids because of appearance, repeated and frustrating visits to suppliers for hearing aid tuning and the inconvenience and complexity of changing batteries. Facett is a true collaboration between science and design. It’s part of a digital health system that empowers people to self-manage their hearing experience.”

Swinburne Vice Chancellor Linda Kristjanson at the launch of Facett with co-developer Adjunct Professor Elaine Saunders. [Image: Swinburne University of Technology]

The self-management comes in the form of a ‘core’ that will allow a wearer to make adjustments to their hearing aid using a tablet, computer, or smartphone, rather than having to visit an audiologist. The bi-component device consists of this programmable core and a module that contains the rechargeable batteries that power it. An essential part of developing this world’s first technology was in the development of a low-power, wireless control system that would create the necessary communication between the hearing aid itself and whichever device the user wishes to use to operate it. That portion of the design was created early on as part of the research of Swinburne PhD candidate Jonathon Miegel, and 3D printing was essential for its ability to cheaply and quickly allow him to prototype and redesign, as he described:

“I provided multiple designs for the modular connections, each of which provided different features aimed at improving the strength of the connection between modules without making the hearing aid too difficult to manipulate. The design and prototyping process was carried out in rapid iterations using a combination of computer-aided design software and various types of 3D printing.”

This device should go a long way toward eliminating the barriers to using a hearing aid for those who could benefit from the technology, as Swinburne continues to devote resources to advances.

3D printing has enabled many innovations in hearing aid technology, in both prototyping and production, and this latest device serves as another example of the speed and efficiency possible to benefit those with hearing loss, as the bulk of the hearing aid industry has turned to additive manufacturing.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source: Swinburne University of Technology]

 

Share this Article


Recent News

Will There Be a Desktop Manufacturing Revolution outside of 3D Printing?

Know Your Würth: CEO AJ Strandquist on How Würth Additive Can Change 3D Printing



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

Featured

Pressing Refresh: What CEO Brad Kreger and Velo3D Have Learned About Running a 3D Printing Company

To whatever extent a business is successful thanks to specialization, businesses will nonetheless always be holistic entities. A company isn’t a bunch of compartments that all happen to share the...

Würth Additive Launches Digital Inventory Services Platform Driven by 3D Printing

Last week, at the Additive Manufacturing Users’ Group (AMUG) Conference in Chicago (March 10-14), Würth Additive Group (WAG) launched its new inventory management platform, Digital Inventory Services (DIS). WAG is...

Featured

Hypersonic Heats Up: CEO Joe Laurienti on the Success of Ursa Major’s 3D Printed Engine

“It’s only been about 24 hours now, so I’m still digesting it,” Joe Laurienti said. But even via Zoom, it was easy to notice that the CEO was satisfied. The...

Featured

3D Printing’s Next Generation of Leadership: A Conversation with Additive Minds’ Dr. Gregory Hayes

It’s easy to forget sometimes that social media isn’t reality. So, at the end of 2023, when a burst of doom and gloom started to spread across the Western world’s...